If tanπ9,x and tan5π18are in AP and tanπ9,y and tan7π18 are also in AP then
A
2x=y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x>y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2x=y ∵tanπ9,x&tan5π18⇒2x=tanπ9+tan5π18⇒2x=sin(π9+5π18)cosπ9cos5π18=sin7π18sin(π2−π9)sin(π2−5π18) ⇒2x=sin7π18sin7π18sin2π9=csc2π9 ...(1) ∵tanπ9,y&tan7π18⇒2y=tanπ9+tan7π18⇒2y=sin(π9+7π18)cosπ9cos7π18=sinπ2cosπ9sin(π2−7π18) ⇒2y=22cosπ9sinπ9=2sinπ9=2csc2π9 ..(2) From (1) and (2) 2x=y Ans: A