If →a+→b+→c=0,|→a|=3,∣∣→b∣∣=5,|→c|=7, then the angle between →a & →b is :
→a+→b=→−c
Thus, |→a+→b|=|→−c|=7
√a2+b2+2abcosθ=7
which gives, 9+25+2×15×cosθ=49
cosθ=12
Thus, θ=π3