If x=1−√2, find the value of (x−1x)3.
a=1+x33!+x66!+...,
b=x+x44!+x77!+...,
c=x22!+x55!+x88!+....
If a3+b3+c3−zabc=1. Find the value of z
Solve : 2x3−x−16+7x−14=216.
Hence, find the value of 'a', if 1a+5x=8.
If x−1x=7, find the value of x3−1x3.