No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12eπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12eπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2eπ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D2eπ Since, x=etsint and y=etcost On differentiating w.r.t. t respectively, we get dxdt=etcost+sintet and dydt=−etsint+etcost ∴dydx=dy/dtdx/dt=et(cost−sint)et(cost+sint) =cost−sintcost+sint Again differentiating, we get [(cost+sint)(cost−sint)] d2ydx2=−(cost−sint)(−sint+cost)(cost+sint)2dtdx =−(sint+cost)2−(cost−sint)2(cost+sint)2×1et(cost+sint) =−[sin2t+cos2t+2sintcost+cos2t+sin2t−2sintcostet(cost+sint)3] =−2et(cost+sint)3 ⇒(d2ydx2)(t=π)=2eπ(cosπ+sinπ)3 =2eπ