x−iy=√a−ibc−id
=√a−ibc−id×c+idc+id
=√(ac+bd)+i(ad−bc)c2+d2
∴(x−iy)2=(ac+bd)+i(ad−bc)c2+d2
⇒x2−y2−2ixy=(ac+bd)+i(ad−bc)c2+d2
On comparing real and imaginary parts, we obtain
x2−y2=ac+bdc2+d2,−2xy=ad−bcc2+d2......(1)
∴(x2+y2)2=(x2−y2)2+4x2y2
=(ac+bdc2+d2)2+(ad−bcc2+d2)2[using1]
=a2c2+b2d2+2acbd+a2d2+b2c2−2adbc(c2+d2)2
=a2c2+b2d2+a2d2+b2c2(c2+d2)2
=a2(c2+d2)+b2(c2+d2)(c2+d2)2
=(c2+d2)(a2+b2)(c2+d2)2=a2+b2c2+d2
Hence, proved