wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xiy=aibcid prove that (x2+y2)2=a2+b2c2+d2

Open in App
Solution

xiy=aibcid

=aibcid×c+idc+id

=(ac+bd)+i(adbc)c2+d2

(xiy)2=(ac+bd)+i(adbc)c2+d2

x2y22ixy=(ac+bd)+i(adbc)c2+d2

On comparing real and imaginary parts, we obtain

x2y2=ac+bdc2+d2,2xy=adbcc2+d2......(1)

(x2+y2)2=(x2y2)2+4x2y2

=(ac+bdc2+d2)2+(adbcc2+d2)2[using1]

=a2c2+b2d2+2acbd+a2d2+b2c22adbc(c2+d2)2

=a2c2+b2d2+a2d2+b2c2(c2+d2)2

=a2(c2+d2)+b2(c2+d2)(c2+d2)2

=(c2+d2)(a2+b2)(c2+d2)2=a2+b2c2+d2

Hence, proved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon