The correct options are
A dydx doesn't exist at
x=0 B dydx=0 when
x=1xy=ex−yDifferentiating with respect to x, we get
y+xdydx=ex−y(1−dydx).
y+xdydx=(xy)(1−dydx).
y+xdydx=xy−xy.dydxdydx(x+xy)=xy−ydydx=xy−yx+xyNow
dydx|x=1=y−y1+y=0.
Also, when x=0, we see that the denominator becomes 0. So dydx doesn't exist at x=0
Hence, option A and B are correct.