If y=xa+xb+y, then dydx is
y=xa+xb+y
y=x(b+y)ab+ay+x
⇒ aby+ay2+xy=xb+xy
⇒ aby+ay2=xb
Differentiating both side w.r.t x we get,
⇒abdydx+2aydydx=b⇒dydx=bab+2ay
If A =[abba] and A2 =[xyyx] , then