If y=f(2x−1x2+1) and f′(x)=sinx2 then dydx is equal to-
A
sin(2x−1x2+1)2(2+2x+x2(x2+1)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin(2x−1x2+1)2(2+2x−2x2(x2+1)2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sin(2x−1x2+1)2(2+2x−x2(x2+1)2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsin(2x−1x2+1)2(2+2x−2x2(x2+1)2) y=f(2x−1x2+1) and f′(x)=sinx2 y′=f′(2x−1x2+1)×2x2+2−4x2+2x(x2+1)2 =f′(2x−1x2+1)−2x2+2x+2(x2+1)2 =sin(2x−1x2+1)2(2+2x−2x2(x2+1)2) (∵f′(x)=sinx2)