wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=1(x2+a2)+(x2+b2), find dydx.

A
=x(a2b2)[1(x2+a2)1(x2+b2).]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
=x(a2b2)[1(x2a2)1(x2b2).]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
=x(a2+b2)[1(x2+a2)1(x2+b2).]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
=x(a2+b2)[1(x2a2)1(x2b2).]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A =x(a2b2)[1(x2+a2)1(x2+b2).]
Given, y=1(x2+a2)+(x2+b2),
y=1(x2+a2)+(x2+b2)×(x2+a2)(x2+b2)(x2+a2)(x2+b2)
=(x2+a2)(x2+b2)(x2+a2)(x2+b2)
=1(a2b2)[(x2+a2)(x2+b2)]
Now using ddxu=12ududx
dydx=1(a2b2)[12(x2+a2).2x12(x2+b2).2x]
=x(a2b2)[1(x2+a2)1(x2+b2).]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon