If y=log(mcos−1x) is a solution of the differential equation (1−x2)d2ydx2−xdydx=ke−2y then k=
y=log(mcos−1x)
Differentiating the given relation, dydx=1mcos−1x.−m√1−x2 Square
∴(1−x2)(dydx)2=1(cos−1x)2⋯(1)
Now ey=mcos−1x
∴1(cos−1x)2=m2e−2y
Putting in (1), (1−x2)(dydx)2=m2e−2y
Differentiating again (1−x2).2(dydx)d2ydx2−2x(dydx)2=−2m2e−2ydydx
Cancel 2(dydx) or (1−x2)d2ydx2−xdydx=−m2e−2y=ke−2y
Hence k=−m2