Given, y=log[x+√x2+a2]
Differentiate both sides with respect to x
dydx=1x+√x2+a2[1+1(2x)2√x2+a2]
dydx=1x+√x2+a2[√x2+a2+x√x2+a2]
dydx=1√x2+a2 .....(1)
Again differentiate both sides with respect to x
d2ydx2=−12(x2+a2)−32(2x)
d2ydx2=−x(x2+a2)√x2+a2
(x2+a2)d2ydx2=−x√x2+a2
(x2+a2)d2ydx2=−xdydx .....[From equation 1]
(x2+a2)d2ydx2+xdydx=0
Hence, proved.