The correct option is
A 0If
eu=x+√x2−y2x−√x2−y2Ify=exx=logey
SO the equation becomes eu=x+√x2−y2x−√x2−y2u=loge(x+√x2−y2x−√x2−y2)→(1)
Differentiating ′u′ w.r.t to ′x′ partially
Apply chain rule dfdx(u)=dfdu.dudx
f=ℓn(u)andu=x+√x2−y2x−√x2−y2
∂∂uf(u)=∂∂uf(ℓn(u))∂∂x(x+√x2−y2x−√x2−y2)
=1u[∂∂x(x+√x2+y2)(x−√x2−y2)−∂∂x(x−√x2−y2)(x+√x2+y2)(x−√x2−y2)2]
Substitute ′u′
∂∂x(u)=2xy2+y2√y2+x2−y2√−y2+x2(x+√x2+y2)(x−√x2−y2)(√y2+x2)(x2+y2)
Similarly ∂∂y[ℓn(x+√x2+y2x−√x2−y2)]=xy√x2−y2−2xy2−xy√x2+y2(x+√x2+y2)(x−√x2−y2)√x2−y2√x2+y2→(2)
To find x∂u∂x+y∂u∂y
SUbstituting equation (1) and (2)
$x\left[ \frac { 2x{ y }^{ 2 }+{ y }^{ 2 }\sqrt { x^{ 2 }+{ y }^{ 2 } } -{ y }^{ 2 }\sqrt { -y^{ 2 }+{ x }^{ 2 } } }{ \left( x+\sqrt { x^{ 2 }+{ y }^{ 2 } } \right) \left( x-\sqrt { x^{ 2 }{ -y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }-{ y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }+{ y }^{ 2 } } \right) } \right] $
$+y\left[ \frac { y\sqrt { x^{ 2 }{ -y }^{ 2 } } -2x^{ 2 }y-xy\sqrt { x^{ 2 }+{ y }^{ 2 } } }{ \left( x+\sqrt { x^{ 2 }+{ y }^{ 2 } } \right) \left( x-\sqrt { x^{ 2 }{ -y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }-{ y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }+{ y }^{ 2 } } \right) } \right] $
$=\frac { 2x^{ 2 }y^{ 2 }+xy^{ 2 }\sqrt { x^{ 2 }+{ y }^{ 2 } } -xy^{ 2 }\sqrt { x^{ 2 }{ -y }^{ 2 } } +xy^{ 2 }\sqrt { x^{ 2 }{ -y }^{ 2 } } -2x^{ 2 }y^{ 2 }-xy^{ 2 }\sqrt { x^{ 2 }+{ y }^{ 2 } } }{ \left( x+\sqrt { x^{ 2 }+{ y }^{ 2 } } \right) \left( x-\sqrt { x^{ 2 }{ -y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }-{ y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }+{ y }^{ 2 } } \right) } $
=0
Therefor the correct answer is option A
$\\ \\ x\frac { \partial u }{ \partial x } +y\frac { \partial u }{ \partial y } =0$