wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


If eu=x+x2y2xx2y2, then xux+yuy=

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
eu
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2eu
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 0
If eu=x+x2y2xx2y2Ify=exx=logey

SO the equation becomes eu=x+x2y2xx2y2u=loge(x+x2y2xx2y2)(1)

Differentiating u w.r.t to x partially

Apply chain rule dfdx(u)=dfdu.dudx

f=n(u)andu=x+x2y2xx2y2

uf(u)=uf(n(u))x(x+x2y2xx2y2)

=1u[x(x+x2+y2)(xx2y2)x(xx2y2)(x+x2+y2)(xx2y2)2]

Substitute u

x(u)=2xy2+y2y2+x2y2y2+x2(x+x2+y2)(xx2y2)(y2+x2)(x2+y2)

Similarly y[n(x+x2+y2xx2y2)]=xyx2y22xy2xyx2+y2(x+x2+y2)(xx2y2)x2y2x2+y2(2)

To find xux+yuy

SUbstituting equation (1) and (2)

$x\left[ \frac { 2x{ y }^{ 2 }+{ y }^{ 2 }\sqrt { x^{ 2 }+{ y }^{ 2 } } -{ y }^{ 2 }\sqrt { -y^{ 2 }+{ x }^{ 2 } } }{ \left( x+\sqrt { x^{ 2 }+{ y }^{ 2 } } \right) \left( x-\sqrt { x^{ 2 }{ -y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }-{ y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }+{ y }^{ 2 } } \right) } \right] $

$+y\left[ \frac { y\sqrt { x^{ 2 }{ -y }^{ 2 } } -2x^{ 2 }y-xy\sqrt { x^{ 2 }+{ y }^{ 2 } } }{ \left( x+\sqrt { x^{ 2 }+{ y }^{ 2 } } \right) \left( x-\sqrt { x^{ 2 }{ -y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }-{ y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }+{ y }^{ 2 } } \right) } \right] $

$=\frac { 2x^{ 2 }y^{ 2 }+xy^{ 2 }\sqrt { x^{ 2 }+{ y }^{ 2 } } -xy^{ 2 }\sqrt { x^{ 2 }{ -y }^{ 2 } } +xy^{ 2 }\sqrt { x^{ 2 }{ -y }^{ 2 } } -2x^{ 2 }y^{ 2 }-xy^{ 2 }\sqrt { x^{ 2 }+{ y }^{ 2 } } }{ \left( x+\sqrt { x^{ 2 }+{ y }^{ 2 } } \right) \left( x-\sqrt { x^{ 2 }{ -y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }-{ y }^{ 2 } } \right) \left( \sqrt { x^{ 2 }+{ y }^{ 2 } } \right) } $

=0

Therefor the correct answer is option A

$\\ \\ x\frac { \partial u }{ \partial x } +y\frac { \partial u }{ \partial y } =0$


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon