The correct option is D 14 at x=1
We have,
ey(x+1)=1⇒ey=1x+1Taking log on both sides, we get⇒y=log (1x+1)⇒y=−log (x+1)Differentiating both sides w.r.t. x, we get⇒dydx=−1x+1Differentiating again both sides w.r.t. x, we getddx(dydx)=ddx(−1x+1)⇒d2ydx2=1(x+1)2=(dydx)2At x=1, (d2ydx2)x=1=1(1+1)2=14