We have,
f(x)=sin2x−cos2x
On differentiating both sides w.r.t x, we get
f′(x)=cos2x×(2)−(−sin2x)×(2)
f′(x)=2(cos2x+sin2x)
Put x=π6
Therefore,
f′(π6)=2(cosπ3+sinπ3)
f′(π6)=2(12+√32)
f′(π6)=2(1+√32)
f′(π6)=1+√3
Hence, the value is 1+√3.