If f(θ)=cosθ1⋅cosθ2⋅cosθ3.....cosθn. Also dθ1dθ=dθ2dθ=.....=dθndθ=1, then {tanθ1+tanθ2+tanθ3+....+tanθn}=
A
−{f′(θ)f(θ)}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
{f′′(θ)f(θ)}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−{f(θ)f′(θ)}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D−{f′(θ)f(θ)} f(θ)=cosθ1⋅cosθ2⋅cosθ3.....cosθn Taking log on both the sides, logf(θ)=log(cosθ1)+log(cosθ2)+.....+log(cosθn) On differentiating both the sides w.r.t. θ, we get 1f(θ)⋅f′(θ)=1cosθ1⋅(−sinθ1)+1cosθ2⋅(−sinθ2)+.....+1cosθn⋅(−sinθn) Hence, (tanθ1+tanθ2+.....+tanθn)=−{f′(θ)f(θ)}