If f(x)=x∫0etsin(x−t)dt, then f′′x−f(x) is equal to
A
sinx−cosx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinx+cosx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2cosx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Csinx+cosx f(x)=x∫0etsin(x−t)dt Putting t→x−t, we get ⇒f(x)=x∫0ex−tsintdt⇒f(x)=exx∫0e−tsintdt Using Newton-Leibniz rule, we get ⇒f′(x)=exx∫0e−tsintdt+ex(e−xsinx)⇒f′(x)=f(x)+sinx⇒f′′(x)=f′(x)+cosx⇒f′′(x)=f(x)+sinx+cosx∴f′′(x)−f(x)=sinx+cosx