If f(x)=1+cos2x+8sin2xsin 2x. Then the minimum value of f(x) is
2
3
4
5
f(x)=1+cos2x+8sin2xsin 2x=2cos2x+8sin2x2sinx cos x=1+4tan2xtan x=1tan x+4tan x Using A.M≥G.M1+4tan2x2tan x≥√4⇒1tan x+4tan x≥4