The correct option is D log2x
We have, f(xy)=f(x)+f(y)⇒(1)
Put x=y=1
⇒f(1)=0
Now f′(x)=limh→0f(x+h)−f(x)h=limh→0f[x(1+h/x)])−f(x)h
=limh→0f(x)+f(1+h/x)−f(x)h=limh→0f(1+h/x)−f(1)h/x⋅1x=f′(1)x
Now integrating we get, f(x)=f′(1)logx+c
Since f(1)=0⇒c=0
Thus f(x)=f′(1)logx
Also f(2)=1⇒1=f′(1)log2⇒f′(1)=1log2
Hence f(x)=logxlog2=log2x