If f(x) satisfies the relation 2f(x)+f(1-x)=x2 for all real x, then f(x) is
x2+2x-16
x2+2x-13
x2+4x-13
x2-3x+16
x2+3x-13
Explanation for the correct option.
Find the value of f(x):
Given,
2f(x)+f(1-x)=x2...(1)
Replacing x by (1-x),
2f(1-x)+f(x)=1-x2⇒2f(1-x)+f(x)=1+x2-2x...(2)
Now, multiplying equation (1) by 2.
4f(x)+2f(1-x)=2x2
Subtracting this equation from equation (2).
3f(x)=2x2-(1+x2-2x)⇒f(x)=x2+2x-13
Hence, the correct option is B.
If f is a real function satisfying f(x+1x)=x2+1x2 for all xϵR−{0}, then write the expression for f(x).
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2