1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
If fx=x+1x+...
Question
If
f
(
x
)
=
(
x
+
1
)
(
x
+
2
)
(
x
+
3
)
.
.
.
.
.
(
x
+
n
)
, then find
f
′
(
0
)
.
A
(
n
)
!
{
1
+
1
2
+
1
3
+
.
.
.
.
+
1
n
}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(
n
)
!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(
n
)
!
2
{
1
+
1
2
+
1
3
+
.
.
.
.
+
1
n
}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n
(
n
+
1
)
/
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
(
n
)
!
{
1
+
1
2
+
1
3
+
.
.
.
.
+
1
n
}
f
(
x
)
=
(
x
+
1
)
(
x
+
2
)
.
.
.
(
x
+
n
)
Taking log on both sides we get,
l
o
g
f
(
x
)
=
l
o
g
(
x
+
1
)
+
l
o
g
(
x
+
2
)
+
.
.
.
l
o
g
(
x
+
n
)
Differentiating with respect to
x
we get,
f
′
(
x
)
f
(
x
)
=
(
1
x
+
1
+
1
x
+
2
+
.
.
.
+
1
x
+
n
)
At
x
=
0
, we have,
f
′
(
0
)
f
(
0
)
=
(
1
1
+
1
2
+
.
.
.
+
1
n
)
f
(
0
)
=
n
!
f
′
(
0
)
=
n
!
(
1
1
+
1
2
+
.
.
.
+
1
n
)
Suggest Corrections
0
Similar questions
Q.
If
f
(
x
)
=
1
+
x
/
1
!
+
x
2
/
2
!
+
x
3
/
3
!
+
.
.
.
.
.
.
.
.
+
x
n
/
n
!
, then
f
(
x
)
=
0
(n is odd ,
n
≥
3
)
Q.
If
f
(
x
)
=
∣
∣ ∣ ∣
∣
1
+
x
n
(
1
−
x
)
n
2
+
x
n
(
2
+
x
)
n
(
2
+
x
)
n
1
(
3
−
x
)
n
1
3
+
x
∣
∣ ∣ ∣
∣
,
then the constant term in the expansion is
Q.
If
N
=
n
!
(
n
∈
N
,
n
>
2
)
then
(
(
log
2
N
)
−
1
+
(
log
3
N
)
−
1
+
.
.
.
.
.
+
(
log
n
N
)
−
1
]
is