If f(x)=x + tan x and f is inverse of g, then g' (x) is equal to
Let y = f(x) ⇒ x = f1(y)
then f(x) = x+tan x
⇒ y = f−1(y) + tan (f−1(y))
⇒y = g(y) + tan (g(y)) or x = g(x) + tan (g(x)) ....(i)
Differentiating both sides, then we get
1 = g′(x) + sec2g(x).g′(x)
∴g′(x) = 11+sec2(g(x)) = 11+1+tan2(g(x))
= 12+(x−g(x))2 [from Eq.(i)]
= 12+(g(x)−x)2