The correct options are
A f(x) is increasing on (1/e,∞)
B f(x) is decreasing on (0,1/e)
D local minimum value of f(x)=e−1/e
f(x)=xx, x>0
f′(x)=xx(1+logx)
For f′(x)>0,xx(1+logx)>0
1+logx>0⇒x>e−1
⇒x∈(1/e,∞)
For f′(x)<0, xx(1+logx)<0
1+logx<0⇒x<e−1
⇒x∈(0,1/e)
For local minimum, f′(x)=0
⇒x=1e
f(1/e)=e−1e