If for a non-zero x, af(x)+bf(1x)=1x−5, where a≠b, then ∫21f(x)dx=
A
1a2+b2(alog2+5a+7b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1a2−b2(alog2−5a+7b2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−1a2+b2(alog2+5a−7b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1a2−b2(alog2−5a+7b2) Given af(x)+bf(1x)=1x−5 ...(1) Replacing x→1x in (1), we get af(1x)+bf(x)=x−5 ...(2) On multiplying equation (1) by a and equation (2) by b respectively a2f(x)+abf(1x)=a(1x−5) ...(3) abf(1x)+b2f(x)=b(x−5) ...(4) On subtracting (4) from (3) (a2−b2)f(x)=ax−bx−5a+5b⇒f(x)=1(a2−b2)(ax−bx−5a+5b)⇒∫21f(x)dx=1(a2−b2)∫21(ax−bx−5a+5b)dx=1(a2−b2)[alog|x|−b2x2−5(a−b)x]21=1(a2−b2)[alog2−2b−10(a−b)−alog1+b2+5(a−b)]=1(a2−b2)[alog2−5a+72b]