If (1−3x)12+(1−x)53√4−x is approximately equal to a + bx for small values of x, then (a, b) =
(1, 3524)
(1, - 3524)
(2, 3512)
(2, - 3512)
(1−3x)1/2+(1−x)5/32[1−x4]1/212[(1−32x)+(1−5x3)](1+x8)12[2−196x]](1+x8)=12[2−(−14+196)x]=1−3524x∴(a,b)=(1,−3524)
If (1−3x)12+(1−x)53√4−x is approximately equal to
a + bx for small values of x, then (a, b) =