The correct option is B 7
For integers a,m and n, a≠0 we have
am×an=am+n and a−m=1am.
Given that 2m×24×2−62−5=210.
⟹ 2m×24×2−6×25=210
⟹2m×2[4+(−6)+5]=210 [∵am×an=am+n]
⟹2m×23=210⟹2m+3=210 [∵am×an=am+n]
Since the bases are the same on both sides of the equation, we can equate the exponents.
⟹m+3=10
⟹m=7