If 3+2i sinθ1−2i sin θ is a real number and 0 < θ<2<2π then θ
π
Given :
3+2i sinθ1−2i sin θ is a real number
On retionalising, we get
3+2i sin θ1−2i sin θ×1+2i sin θ1+2i sinθ=(3+2i sin θ)(1+2i sinθ)(1)2−(2i sin θ)2=3+2i sinθ+6i sinθ+4i2sin2θ1+4i sin2θ=3−4sin2θ+8i sinθ1+4i sin2θ [∵ i2=−1]=3−4sin2θ1+4sin2θ+i8sin θ1+4sin2θ
For the above term to be real, the imaginary part has to be zero.
∴ 8 sin θ1+4sin2θ=0⇒ 8 sin θ=0For this to be zero, sin θ=0⇒ θ=0, π, 2π, 3π...But 0<θ<2πHence, θ=π