Given, 8a−5b8c−5d=8a+5b8c+5d
⇒ 8a−5b8a+5b=8c−5d8c+5d [Applying alternendo] ( 1 Mark)
8a−5b+8a+5b8a−5b−8a−5b=8c−5d+8c+5d8c−5d−8c−5d [Applying componendo and dividendo] ( 1 Mark)
16a−10b=16c−10d
ab=cd ( 1 Mark)
Hence, it is proved that ab=cd
If 8a−5b8c−5d=8a+5b8c+5d, then ab=cd
Simplify.8a-7b+4a-8c+5b