If log ab−c=log bc−a=log ca−b, then aa.bb.cc=
1
Let each ratio be k and y=aabbcc
Then,
log a=k(b−c)
log b=k(c−a)
log c=k(a−b)
and
log y=aabbcc
log y=a log a+b log b+c log c
log y=k(b−c)+k(c−a)+k(a−b)
log y=k(b−c+c−a+a−b)
∴ log y=0⇒y=1
or aabbcc=1