If √3−1√3+1=a−b√3, then
a=2, b=1
a=2, b=−1
a=−2, b=1
a=b=1
√3−1√3+1=a−b√3
√3−1√3+1=(√3−1)(√3−1)(√3+1)(√3−1)
(Rationalising the denominator)
=(√3−1)2(√32−(1)2)=3+1−2√33−1=4−2√32
=2−√3
Now, 2−√3=a−b√3
Comparing, we get
a = 2, b= 1