wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fx=2x1+x2, show that f(tan θ) = sin 2θ.

Open in App
Solution

Given:
fx=2x1+x2
Thus,
ftanθ=2tanθ1+tan2θ
=2×sin θcos θ1+sin2θcos2θ= 2 sin θ cos θ×cos2θcos2θ+sin2θ= 2 sin θ cos θ1 cos2θ+sin2θ =1=sin 2θ 2 sin θ cos θ = sin 2θ

Hence, f (tan θ) = sin 2θ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon