If f(x) be a polynomial function satisfying f(x)·f1x=f(x)+f1x and f(4)=65. Then find f(6).
65
217
63
none of these
Step 1: Simplify the equation
f(x)·f1x=f(x)+f1xf(x)·f1x-f(x)-f1x+1=1f(x)f1x-1-1-1+f1x=1f(x)-1f1x-1=1
Step 2: Let f(x)-1=xn
f(x)-1=xn⇒f1x-1=1xnf(x)=xn+1
Step 3: Solve for the value of f(6)
⇒f(4)=65⇒4n+1=65⇒4n=64⇒4n=43⇒n=3⇒f(x)=x3+1⇒f(6)=(6)3+1⇒f(6)=217
Hence, option B is correct.