If f(x)=sin2x1+cotx+cos2x1+tanx, then f'π4 is equal to
3
13
0
-3
Explanation for the correct option.
Step 1: Simplifying the given function:
f(x)=sin2x1+cotx+cos2x1+tanx=sin2x1+1tanx+cos2x1+tanx=sinxcosxsin2x1+tanx+cos2x1+tanx=sin3x+cos3xcosx1+tanx=sin3x+cos3xcosx+sinx=sinx+cosxsin2x+cos2x-sinx·cosxcosx+sinx[∵a3+b3=(a+b)(a2+b2-ab)]=1-sinx·cosx=1-12sin2x[∵sin2x=2sinxcosx]
Step 2: Find the value of f'π4:
Now, differentiate f(x) w.r.t. x.
f'(x)=-cos2x⇒f'π4=-cos2π4=-cosπ2=0
Hence, the correct option is C.