The correct option is B 13(a2+b2+c2)
By Appolloneous theorem,
GB2+GC2=2[GD2+DC2]
⇒GB2+GC2=2[(12GA)2+(a2)2]
⇒GB2+GC2=GA22+a22 .............(1)
Similarly, we have
GC2+GA2=GB22+b22 .............(2)
GA2+GB2=GC22+c22 .............(3)
Adding eqns(1),(2) and (3) we get
2[GA2+GB2+GC2]=GA2+GB2+GC22+a2+b2+c22
⇒(GA2+GB2+GC2)(2−12)=a2+b2+c22
∴GA2+GB2+GC2=a2+b2+c23