The correct options are
A A=−13
B C=−2
Given I=∫sec2xcosec4xdx=Acot3x+Btanx+Ccotx+D ....(1)
Consider, I=∫sec2xcosec4xdx
=∫1cos2xsin4xdx
=∫(sin2x+cos2x)2cos2xsin4xdx
∫sin4x+cos4x+2sin2xcos2xcos2xsin4xdx
=∫(sec2x+2cosec2x+cos2xsin4x)dx
=tanx−2cotx+∫cot2xcosec2xdx
Put cotx=t in the integral
−cosec2xdx=dt
=tanx−2cotx−cot3x3+D
Put this value in (1) and on comparing we get
A=−13,B=1,C=−2