If I=∫01dx1+xπ2, then
loge2<I<π4
loge2>I
I=π4
I=loge2
Explanation for correct option:
Find the relation:
Since, x∈(0,1), then
⇒x2<xπ2<x⇒1+x2<1+xπ2<1+x[add1andtakereciprocal]⇒11+x2>11+xπ2>11+x⇒∫0111+x2dx>∫0111+xπ2dx>∫0111+xdx⇒[tan-1x]01>I>[In|1+x|]01⇒π4>I>In2-In1⇒π4>I>In2
Hence, the correct option is A.
If I1=∫sin-1xdxand I2=∫sin-1√(1-x2)dx, then
If I1=∫01(1-x50)100dx and I2=∫01(1-x50)101dx such that I2=αI1 then α equals to: