If Im,n=∫xm(lnx)ndx, then (m+1)Im,n−nIm,n+1=
(where m,n∈W;C is integration constant)
A
xm(lnx)n+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−xm(lnx)n+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−xm+1(lnx)n+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xm+1(lnx)n+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dxm+1(lnx)n+C Im,n=∫xm(lnx)ndx=∫1(lnx)nI⋅xIIm
Applying integration by parts Im,n=1(lnx)n⋅xm+1(m+1)−∫(−n)(lnx)n+1⋅1x⋅xm+1m+1dx=1(lnx)n⋅xm+1(m+1)+n(m+1)∫xm(lnx)n+1dx⇒(m+1)Im,n=xm+1(lnx)n+nIm,n+1⇒(m+1)Im,n−nIm,n+1=xm+1(lnx)n+C