If In=∫tannxdx then I0+I1+2(I2+I3+....+I8)+I9+I10 equals
A
1+8∑n=1tannxn
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9∑n=1tannxn
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
∞∑n=2tannxn+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
9∑n=1tannxn+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B9∑n=1tannxn In=∫tannxdx=∫tann−2x(sec2x−1)dx ∴In=∫tann−2xsec2xdx−∫tann−2xdx ∴In−2+In=∫tann−2xsec2xdx=tann−1xn−1(∀n≥2) Putting n=2,3,4,...10&adding we get ∴I0+I1+2(I2+I3+I4+...+I8)+I9+I10=9∑n=1tannxn