If in a â–³ABC,sin3 A+sin3 B+sin3 C=3 sin A sin B sin C then the value of the determinant
⎡⎢⎣abcbcacab⎤⎥⎦ is
0
⎡⎢⎣abcbcacab⎤⎥⎦ = (a+b+c)⎡⎢⎣111bcacab⎤⎥⎦
=(a+b+c)(bc+ca+ab−a2−b2−c2)
=-(a3+b3+c3−3abc)
=-8R3(sin3 A+sin3 B+sin3 C−3sin Asin Bsin C)=0