3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Binomial Theorem
If in the exp...
Question
If in the expansion of
(
1
−
x
)
2
n
−
1
, the coefficient of
x
r
denoted by
a
r
, then :
A
a
r
−
1
+
a
2
n
−
r
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a
r
−
1
−
a
2
n
−
r
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a
r
−
1
+
2
a
2
n
−
r
=
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
a
r
−
1
+
2
a
2
n
−
r
=
0
We have,
a
r
−
1
=
coefficient of
x
r
−
1
i
n
(
1
−
x
)
2
n
−
1
=
(
−
1
)
r
−
1
,
2
n
−
1
C
r
−
1
a
2
n
−
r
coefficient of
c
2
n
−
r
i
n
(
1
−
x
)
2
n
−
1
=
(
−
1
)
2
n
−
r
.2
n
−
1
C
2
n
−
r
Now,
a
r
−
1
+
a
2
n
−
r
=
(
−
1
)
r
−
1
.
2
n
−
1
C
r
−
1
+
(
−
1
)
2
n
−
r
.
2
n
−
1
2
n
−
1
C
2
n
−
r
=
(
−
1
)
r
−
1
.2
n
−
1
C
(
2
n
−
1
)
−
(
r
−
1
)
+
(
−
1
)
2
n
.
(
−
1
)
−
r
.
2
n
−
1
C
2
n
−
r
[
a
s
n
C
r
−
n
C
−
r
]
(
−
1
)
r
−
1
.
2
n
−
1
C
2
n
−
r
+
(
−
1
)
−
r
.
2
n
−
1
C
2
n
−
r
=
2
n
−
1
C
2
n
−
r
[
(
−
1
)
r
−
1
+
(
−
1
)
−
r
]
[
(
−
1
)
r
−
1
+
1
(
−
1
)
r
]
2
N
−
1
C
2
n
−
r
[
(
−
1
)
2
N
−
1
+
1
‘
(
−
1
)
R
]
2
n
−
1
C
2
N
−
R
[
−
1
+
1
(
−
1
)
r
]
[
a
s
,
(
−
1
)
2
r
−
1
]
=
−
1
=
0
Suggest Corrections
0
Similar questions
Q.
Consider the expansion of
(
1
+
x
)
2
n
+
1
If the coefficients of
x
r
and
x
r
+
1
are equal in the expansion, then
r
is equal to
Q.
If
a
r
>
0
;
∀
r
,
n
∈
N
and
a
1
,
a
2
,
a
3
,
.
.
.
.
.
a
2
n
are in A.P, then
a
1
+
a
2
n
√
a
1
+
√
a
2
+
a
2
+
a
2
n
−
1
√
a
2
+
√
a
3
+
a
3
+
a
2
n
−
2
√
a
3
+
√
a
4
+
.
.
.
+
a
n
+
a
n
+
1
√
a
n
+
√
a
n
+
1
=
Q.
If
a
r
>
0
,
r
∈
N
and
a
1
,
a
2
,
a
3
,
.
.
.
,
a
2
n
are in A.P. then
a
1
+
a
2
n
√
a
1
+
√
a
2
+
a
2
+
a
2
n
−
1
√
a
2
+
√
a
3
+
a
3
+
a
2
n
−
2
√
a
3
+
√
a
4
+
.
.
.
+
a
n
+
a
n
+
1
√
a
n
+
√
a
n
+
1
is equal to
Q.
If
a
0
,
a
1
,
a
2
....be the coefficients in the expansion of
(
1
+
x
+
x
2
)
n
in ascending powers
f
(
x
)
, then prove that :
a
r
=
a
2
n
−
r
Q.
The coefficient of
x
r
[
0
≤
r
≤
(
n
−
1
)
]
in the expansion of
(
x
+
3
)
n
−
1
+
(
x
+
3
)
n
−
2
(
x
+
2
)
+
(
x
+
3
)
n
−
3
(
x
+
2
)
2
+
.
.
.
.
.
+
(
x
+
2
)
n
−
1
are
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
What is Binomial Expansion?
MATHEMATICS
Watch in App
Explore more
Binomial Theorem
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app