The correct option is D equilateral
cosA+cosB+cosC=3/2
⇒2(2cosA+B2cosA−B2)+2(1−2sin2C2)=3
As A+B+C=π
⇒(4sinC2cosA−B2)+(2−4sin2C2)=3
⇒4sin2C2−4cos(A−B2)sinC2+1=0
Since, D≥0
16cos2(A−B2)−4(4)(1)≥0
⇒cos2(A−B2)≥1
But cos2x∈[0,1]
So, cos2(A−B2)=1
⇒A−B2=0⇒A=B
Similarly, B=C
Therefore, A=B=C
Hence, It is an equilateral triangle