If ∫2x2sec2x dx(x sec2x−tan x)2=f(x)+cosx+x+c, where C is constant of integration, then value of f(π4)−f(−π4) is equal to
π2−π
∫2x2sec2x dx(x sec2x−tan x)2ii xtan xidx
=xtan x.1(xsec2x−tan x)−∫tanx−sec2tan2x−dxxsec2x−tanx=−x(tanx)(xsec2x−tanx)−∫cot2xdx=−x(tanx)(xsec2x−tanx)+cotx+x+c⇒f(x)=−x(tanx)(xsec2x−tanx)