If ∫dxx√1−x3=a log∣∣∣√1−x3−1√1−x3+1∣∣∣+C then a =
13
23
−13
−23
Put<br> 1−x3=t2⇒−3x2 dx=2t dt ∴∫dxx√1−x3=∫x2x3√1−x3dx=23∫dtt2−1 =13 log∣∣t−1t+1∣∣+C =13 log∣∣∣√1−x3−1√1−x3+1∣∣∣+C ∴a=13