If ∫cosθ5+7sinθ-2cos2θdθ=AlogeB(θ)+C where C is a constant of integration, then B(θ)A can be
52sinθ+1(sinθ+3)
5sinθ+3(2sinθ+1)
2sinθ+1(sinθ+3)
2sinθ+15(sinθ+3)
Explanation for the correct option.
Find the value of B(θ)A:
Given,
∫cosθ5+7sinθ-2cos2θdθ=AlogeB(θ)+C.
Let, sinθ=t
⇒cosθdθ=dt
So, the integral should be,
∫cosθ3+7sinθ+21-cos2θdθ=AlogeB(θ)+C⇒∫cosθ3+7sinθ+2sin2θdθ=AlogeB(θ)+C⇒∫dt3+7t+2t2=AlogeB(θ)+C[∵sinθ=t&&cosθdθ=dt]⇒15∫5dt(2t+1)(t+3)=AlogeB(θ)+C⇒15∫22t+1-1t+3dt=AlogeB(θ)+C⇒15loge2t+1t+3+C=AlogeB(θ)+C⇒15loge2sinθ+1sinθ+3+C=AlogeB(θ)+C
On comparing the coefficient of both side,
A=15and B(θ)=2sinθ+1sinθ+3
Therefore,
B(θ)A=5(2sinθ+1)sinθ+3
Hence, the correct option is A.
If ∫sin-1x1+xdx=Axtan-1x+Bx+C, where C is a constant of integration, then the ordered pair (A(x),B(x)) can be: