wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ5+7sinθ-2cos2θdθ=AlogeB(θ)+C where C is a constant of integration, then B(θ)A can be


A

52sinθ+1(sinθ+3)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

5sinθ+3(2sinθ+1)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2sinθ+1(sinθ+3)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

2sinθ+15(sinθ+3)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

52sinθ+1(sinθ+3)


Explanation for the correct option.

Find the value of B(θ)A:

Given,

cosθ5+7sinθ-2cos2θdθ=AlogeB(θ)+C.

Let, sinθ=t

cosθdθ=dt

So, the integral should be,

cosθ3+7sinθ+21-cos2θdθ=AlogeB(θ)+Ccosθ3+7sinθ+2sin2θdθ=AlogeB(θ)+Cdt3+7t+2t2=AlogeB(θ)+C[sinθ=t&&cosθdθ=dt]155dt(2t+1)(t+3)=AlogeB(θ)+C1522t+1-1t+3dt=AlogeB(θ)+C15loge2t+1t+3+C=AlogeB(θ)+C15loge2sinθ+1sinθ+3+C=AlogeB(θ)+C

On comparing the coefficient of both side,

A=15and B(θ)=2sinθ+1sinθ+3

Therefore,

B(θ)A=5(2sinθ+1)sinθ+3

Hence, the correct option is A.


flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon