If largest subset of (0,π) at each point of which the function f(x)=3cos4x+10cos3x+6cos2x−3 is decreasing is (0,πp)∪(2πr,π), then find the value of (p+r)
Open in App
Solution
f(x)=12cos2x(−sinx)+30cos2x(−sinx)+12cosx(−sinx) =−3sin2x(2cos2x+5cosx+2) =−3sin2x(2cosx+1)(cosx+2) f(x)=0⇒sin2x=0⇒x=0,π2,π 2cosx+1=0, ⇒x=2π3 If f(x) decreases on (0,π2)∪(2π3.π) f(x), (0,π2)∪(2π3,π) f(x)(0,π2)∪(2π3,π) and increases on (π2,2π3)or(π2,2π3)