If (a1+ib1)(a2+ib2)...(an+ibn)=A+iB, then tan−1b1a1+tan−1b2a2+...tan−1bnan=
A
kπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
kπ+tan−1b2a2+...+tan−1bnan
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
kπ+tan−1BA
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
kπ−tan−1BA
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bkπ+tan−1BA In the r−θ Euler form ⇒(r1eiθ1)(r2eiθ2)...(rneiθn)=A+iB ⇒(r1r2...rn)(ei(θ1+θ2...θn))=A+iB comparing real and imaginary parts ⇒(r1r2...rn)cos(θ1+θ2...+θn)=A------(1) and (r1r2...rn)sin(θ1+θ2...+θn)=B------(2) Now, tan−1b1a1+tan−1b2b2...=θ1+θ2+...+θn Now dividing (2) by (1) ⇒tan(θ1+θ2...+θn)=BA ⇒θ1+θ2...+θn=tan−1BA+kπ [for tan(x+kπ)=tanx]