If (a+2)sinα+(2a−1)cosα=(2a+1) , then tanα=
Let t=tanθ2 (a+2)sinθ+(2a−1)cosθ=2a+1⇒(a+2)2t1+t2+(2a−1)1−t21+t2=2a+1⇒(2t−1)(at−1)=0
Gives t=12 or t=1a For t=tan2θ2=12⇒tanθ=2t1−t2=11−14=43 For t=tan2θ2=1a⇒tanθ=2t1−t2=21a1−1a2=2a(a2−1)
Solve:
(a+2)sinα+(2a−1)cosα=(2a+1) if tanα is :