wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (ax+b)ey/x=x or, y=xlog(xa+bx), prove that x3d2ydx2=(xdydxy)2.

Open in App
Solution

Given that,
y=xlog(xa+bx)
Differentiation to x on both sides we have,
dydx=x×1xa+bx×a+bxxb(a+bx)2+log(xa+bx)
dydx=(a+bx)×a(a+bx)2+log(xa+bx)
dydx=a(a+bx)+log(xa+bx)
Again differentiation to x on both sides we have
dydx=x×1xa+bx×a+bxxb(a+bx)2+log(xa+bx)
dydx=(a+bx)×a(a+bx)2+log(xa+bx)
d2ydx2=ad(a+bx)1d(a+bx)×d(a+bx)dx+dlog(xa+bx)d(xa+bx)×d(xa+bx)dx
d2ydx2=a(1)(a+bx)2b+1xa+bx×(a+bxxb)(a+bx)2
d2ydx2=ab(a+bx)2+(a+bx)x×a(a+bx)2
=ab(a+bx)2+ax(a+bx)
d2ydx2=abx+a(a+bx)x+(a+bx)2
d2ydx2=abx+a2+abxx+(a+bx)2
d2ydx2=a2x+(a+bx)2
x3d2ydx2=(xdydxy)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon