Given that,
y=xlog(xa+bx)
Differentiation to x on both sides we have,
dydx=x×1xa+bx×a+bx−xb(a+bx)2+log(xa+bx)
dydx=(a+bx)×a(a+bx)2+log(xa+bx)
dydx=a(a+bx)+log(xa+bx)
Again differentiation to x on both sides we have
dydx=x×1xa+bx×a+bx−xb(a+bx)2+log(xa+bx)
dydx=(a+bx)×a(a+bx)2+log(xa+bx)
d2ydx2=ad(a+bx)−1d(a+bx)×d(a+bx)dx+dlog(xa+bx)d(xa+bx)×d(xa+bx)dx
⇒d2ydx2=a(−1)(a+bx)−2b+1xa+bx×(a+bx−xb)(a+bx)2
⇒d2ydx2=−ab(a+bx)−2+(a+bx)x×a(a+bx)2
=−ab(a+bx)−2+ax(a+bx)
⇒d2ydx2=−abx+a(a+bx)x+(a+bx)2
⇒d2ydx2=−abx+a2+abxx+(a+bx)2
⇒d2ydx2=a2x+(a+bx)2
∴x3d2ydx2=(xdydx−y)2