(x−iy)13=(a−ib)
Cubing both side
x−iy=(a−ib)3
=a3−(ib)3−3×a×ib(a−ib)
=a3+ib3−3a2ib−3ab2
=(a3−3ab2)+i(b3−3a2b)
Comparing real & imaginary part
x=a3−3ab2⇒xa=a2−3b2
y=−(b3−3a2b)
⇒yb=3a2−b2
We get
xa+yb=a2−3b2+3a2−b2