If limn→∞[((10091010)n+(10101009)n)]1n is equal to ab, where a,bϵN, then b−a is equal to
Open in App
Solution
Let (1009)1010=x and (1010)1009=y ∴limn→∞(xn+yn)1n=limn→∞x(1+(yx)n)1n
As logx>logy we have x>y ∴yx<1
Applying binomial theorem, =limn→∞x[1+(yx)n.1n+.....] limn→∞(xn+yn)1n=limn→∞x=(1009)1010=ab ∴b−a=1