The correct options are
A (1,2]
C [3,4)
log1/2(4−x)≥log1/22−log1/2(x−1)
Where, 4−x>0 & x−1>0⇒x∈(1,4)⇒(1)
⇒log2(4−x)≤log22−log2(x−1)[∵loganbm=mnlogab]
⇒log2(4−x)≤log22x−1[∵loga−logb=logab]
⇒(4−x)(x−1)≤2
⇒x2−5x+6≥0
⇒x≥3 or x≤2⇒(2)
Therefore, using (1) and (2)
x∈(1,2]∪[3,4)
Ans: A,B